Bài tập tính khoảng cách trong hình học không gian, Bài tập về khoảng cách từ điểm đến mặt phẳng, Bài tập về khoảng cách lớp 11 có lời giải, Bài tập về khoảng cách lớp 11 Nâng cao, Chuyên de góc và khoảng cách trong không gian, Bài tập Toán về khoảng cách lớp 11, Công thức tính góc và khoảng cách trong không gian, Bài tập trắc nghiệm về khoảng cách lớp 11, Khoảng cách trong không gian pdf

Bài tập tính khoảng cách trong hình học không gian, Bài tập về khoảng cách từ điểm đến mặt phẳng, Bài tập về khoảng cách lớp 11 có lời giải, Bài tập về khoảng cách lớp 11 Nâng cao, Chuyên de góc và khoảng cách trong không gian, Bài tập Toán về khoảng cách lớp 11, Công thức tính góc và khoảng cách trong không gian,Tính khoảng cách giữa hai đường thẳng chéo nhau trong Oxyz, Cách tính khoảng cách giữa hai đường thẳng lớp 12, Bài tập khoảng cách giữa hai đường thẳng chéo nhau lớp 12, Soạn bài khoảng cách giữa hai đường thẳng chéo nhau, tính khoảng cách giữa 2 đường thẳng d1;d2, Giáo án khoảng cách giữa hai đường thẳng chéo nhau, Trắc nghiệm khoảng cách giữa hai đường thẳng chéo nhau, Cách tính khoảng cách giữa hai đường thẳng song songBài tập trắc nghiệm về khoảng cách lớp 11, Khoảng cách trong không gian pdf
CÁC DẠNG BÀI TẬP TÍNH KHOẢNG CÁCH
A. KIẾN THỨC CẦN NẮM:1. Khoảng cách từ một điểm đến một đường thẳng, đến một mặt phẳng
d(a,(P)) = d(M,(P)) trong đó M là điểm bất kì nằm trên a.
Bạn đang xem: Tính khoảng cách trong hình học không gian
d((P),(Q) = d(M,(Q)) trong đó M là điểm bất kì nằm trên (P).· Đường thẳng D cắt cả a, b và cùng vuông góc với a, b được gọi là đường vuông góc chung của a, b. · Nếu D cắt a, b tại I, J thì IJ được gọi là đoạn vuông góc chung của a, b. · Độ dài đoạn IJ được gọi là khoảng cách giữa a, b. · Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa một trong hai đường thẳng đó với mặt phẳng chứa đường thẳng kia và song song với nó. · Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó.
Phương pháp: Dựng đoạn vuông góc chung của hai đường thẳng chéo nhau a và b. Cách 1: Giả sử a ^ b: · Dựng mặt phẳng (P) chứa b và vuông góc với a tại A. · Dựng AB ^ b tại B Þ AB là đoạn vuông góc chung của a và b. Cách 2: Sử dụng mặt phẳng song song. · Dựng mặt phẳng (P) chứa b và song song với a. · Chọn M Î a, dựng MH ^ (P) tại H. · Từ H dựng đường thẳng a¢ // a, cắt b tại B. · Từ B dựng đường thẳng song song MH, cắt a tại A. Þ AB là đoạn vuông góc chung của a và b. Chú ý: d(a,b) = AB = MH = a(a,(P)). Cách 3: Sử dụng mặt phẳng vuông góc. · Dựng mặt phẳng (P) ^ a tại O. · Dựng hình chiếu b¢ của b trên (P). · Dựng OH ^ b¢ tại H. · Từ H, dựng đường thẳng song song với a, cắt b tại B. · Từ B, dựng đường thẳng song song với OH, cắt a tại A. Þ AB là đoạn vuông góc chung của a và b. Chú ý: d(a,b) = AB = OH.
Cho hình tứ diện OABC, trong đó OA, OB, OC = a. Gọi I là trung điểm của BC. Hãy dựng và tính độ dài đoạn vuông góc chung của các cặp đường thẳng: a) OA và BC.
Xem thêm: Tại Sao Không Vào Được Trang Web, Máy Tính Không Vào Được Trang Web







Dạng 2: Tính khoảng cách từ một điểm đến đường thẳng, mặt phẳng,Khoảng cách giữa đường thẳng và mặt phẳng song song,Khoảng cách giữa hai mặt phẳng song song. |
Phương pháp: Để tính khoảng cách từ một điểm đến đường thẳng (mặt phẳng) ta cần xác định đoạn vuông góc vẽ từ điểm đó đến đường thẳng (mặt phẳng).
Cho hình chóp SABCD, có SA ^ (ABCD) và SA = a\sqrt{6}, đáy ABCD là nửa lục giác đều nội tiếp trong đường tròn đường kinh AD = 2a. a) Tính các khoảng cách từ A và B đến mặt phẳng (SCD).














Tổng số điểm của bài viết là: 15 trong 3 đánh giá
Bài tập tính khoảng cách trong hình học không gian Xếp hạng: 5 - 3 phiếu bầu 5